Useful R/RStudio Extensions
This guide covers essential R and RStudio extensions that will enhance your
bioinformatics workflow and make working with the tucca-rna-seq results more
efficient and enjoyable.
Essential RStudio Extensions
1. Code Quality and Productivity
🔍 Code Diagnostics
Improve code quality and catch errors early.
- lintr: R code linting
- styler: Code formatting
- goodpractice: Best practices checker
⚡ Productivity Tools
Speed up your coding workflow.
- usethis: Package development tools
- devtools: Development utilities
- roxygen2: Documentation generation
2. Data Science and Visualization
📊 Data Manipulation
Essential packages for data analysis.
- tidyverse: Data science ecosystem
- data.table: Fast data operations
- dplyr: Data manipulation verbs
🎨 Visualization
Create publication-ready plots.
- ggplot2: Grammar of graphics
- plotly: Interactive plots
- patchwork: Plot composition
Bioinformatics-Specific Extensions
1. Bioconductor Core
# Install Bioconductor
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install()
# Core packages
BiocManager::install(c(
"Biobase",
"BiocGenerics",
"S4Vectors",
"IRanges"
))
2. RNA-Seq Analysis
# Differential expression
BiocManager::install(c(
"DESeq2",
"edgeR",
"limma"
))
# Quality control
BiocManager::install(c(
"fastqcr",
"ShortRead",
"Biostrings"
))
3. Functional Enrichment
# Enrichment analysis
BiocManager::install(c(
"clusterProfiler",
"enrichplot",
"DOSE"
))
# Pathway analysis
BiocManager::install(c(
"pathview",
"SPIA",
"ReactomePA"
))
RStudio IDE Extensions
1. Code Navigation
- Bookmarks: Mark important code sections
- Breadcrumbs: Navigate file structure
- Code Outline: View function structure
- Find in Files: Search across project
2. Version Control
- Git Integration: Built-in Git support
- Git History: View file changes
- Git Branches: Manage branches
- Pull Requests: GitHub integration
3. Project Management
- Project Templates: Standardize project structure
- R Markdown: Dynamic documents
- Shiny Apps: Interactive applications
- Package Development: Build R packages
Installation and Setup
1. Install R and RStudio
# macOS (using Homebrew)
brew install --cask r
brew install --cask rstudio
# Ubuntu/Debian
sudo apt-get install r-base r-base-dev
# Download RStudio from https://posit.co/download/rstudio-desktop/
2. Install Essential Packages
# Core packages
install.packages(c(
"tidyverse",
"devtools",
"usethis",
"roxygen2"
))
# Bioconductor
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(c(
"DESeq2",
"clusterProfiler",
"pcaExplorer",
"GeneTonic"
))
3. Configure RStudio
# Set working directory
setwd("~/path/to/your/project")
# Load common libraries
library(tidyverse)
library(DESeq2)
library(clusterProfiler)
Best Practices
1. Project Organization
project/
├── data/
│ ├── raw/
│ └── processed/
├── scripts/
│ ├── analysis.R
│ └── functions.R
├── results/
│ ├── figures/
│ └── tables/
├── docs/
└── .Rproj
2. Code Style
# Use consistent naming
gene_counts <- read.csv("data/gene_counts.csv")
deseq_results <- run_deseq(gene_counts)
# Add comments
# Load differential expression results
deseq_results <- readRDS("results/deseq_results.RDS")
# Use pipe operator for readability
results_summary <- deseq_results %>%
filter(padj < 0.05) %>%
arrange(desc(log2FoldChange)) %>%
head(100)
3. Reproducibility
# Set random seed
set.seed(42)
# Use renv for package management
renv::init()
renv::snapshot()
# Document session info
sessionInfo()
Troubleshooting
Common Issues
| Problem | Solution |
|---|---|
| Package conflicts | Use conflicts() to check |
| Memory issues | Increase memory limit in RStudio |
| Version conflicts | Use renv for isolation |
| Bioconductor errors | Update BiocManager |
Getting Help
- R Help:
?function_name - Package Vignettes:
browseVignettes("package_name") - Stack Overflow: [r] tag
- Bioconductor Support: support.bioconductor.org
Next Steps
After setting up your R environment:
- Explore the workflow results using the provided RMarkdown notebooks
- Customize your analysis with additional R packages
- Create publication-ready figures using ggplot2 and extensions
- Share your code using version control and documentation
For workflow-specific analysis, see the Interactive Analysis guide.
These extensions will significantly enhance your R/RStudio experience and make bioinformatics analysis more efficient and enjoyable.