Skip to main content

Useful R/RStudio Extensions

This guide covers essential R and RStudio extensions that will enhance your bioinformatics workflow and make working with the tucca-rna-seq results more efficient and enjoyable.


Essential RStudio Extensions

1. Code Quality and Productivity

🔍 Code Diagnostics

Improve code quality and catch errors early.

  • lintr: R code linting
  • styler: Code formatting
  • goodpractice: Best practices checker

⚡ Productivity Tools

Speed up your coding workflow.

  • usethis: Package development tools
  • devtools: Development utilities
  • roxygen2: Documentation generation

2. Data Science and Visualization

📊 Data Manipulation

Essential packages for data analysis.

  • tidyverse: Data science ecosystem
  • data.table: Fast data operations
  • dplyr: Data manipulation verbs

🎨 Visualization

Create publication-ready plots.

  • ggplot2: Grammar of graphics
  • plotly: Interactive plots
  • patchwork: Plot composition

Bioinformatics-Specific Extensions

1. Bioconductor Core

# Install Bioconductor
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install()

# Core packages
BiocManager::install(c(
"Biobase",
"BiocGenerics",
"S4Vectors",
"IRanges"
))

2. RNA-Seq Analysis

# Differential expression
BiocManager::install(c(
"DESeq2",
"edgeR",
"limma"
))

# Quality control
BiocManager::install(c(
"fastqcr",
"ShortRead",
"Biostrings"
))

3. Functional Enrichment

# Enrichment analysis
BiocManager::install(c(
"clusterProfiler",
"enrichplot",
"DOSE"
))

# Pathway analysis
BiocManager::install(c(
"pathview",
"SPIA",
"ReactomePA"
))

RStudio IDE Extensions

1. Code Navigation

  • Bookmarks: Mark important code sections
  • Breadcrumbs: Navigate file structure
  • Code Outline: View function structure
  • Find in Files: Search across project

2. Version Control

  • Git Integration: Built-in Git support
  • Git History: View file changes
  • Git Branches: Manage branches
  • Pull Requests: GitHub integration

3. Project Management

  • Project Templates: Standardize project structure
  • R Markdown: Dynamic documents
  • Shiny Apps: Interactive applications
  • Package Development: Build R packages

Installation and Setup

1. Install R and RStudio

# macOS (using Homebrew)
brew install --cask r
brew install --cask rstudio

# Ubuntu/Debian
sudo apt-get install r-base r-base-dev
# Download RStudio from https://posit.co/download/rstudio-desktop/

2. Install Essential Packages

# Core packages
install.packages(c(
"tidyverse",
"devtools",
"usethis",
"roxygen2"
))

# Bioconductor
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(c(
"DESeq2",
"clusterProfiler",
"pcaExplorer",
"GeneTonic"
))

3. Configure RStudio

# Set working directory
setwd("~/path/to/your/project")

# Load common libraries
library(tidyverse)
library(DESeq2)
library(clusterProfiler)

Best Practices

1. Project Organization

project/
├── data/
│ ├── raw/
│ └── processed/
├── scripts/
│ ├── analysis.R
│ └── functions.R
├── results/
│ ├── figures/
│ └── tables/
├── docs/
└── .Rproj

2. Code Style

# Use consistent naming
gene_counts <- read.csv("data/gene_counts.csv")
deseq_results <- run_deseq(gene_counts)

# Add comments
# Load differential expression results
deseq_results <- readRDS("results/deseq_results.RDS")

# Use pipe operator for readability
results_summary <- deseq_results %>%
filter(padj < 0.05) %>%
arrange(desc(log2FoldChange)) %>%
head(100)

3. Reproducibility

# Set random seed
set.seed(42)

# Use renv for package management
renv::init()
renv::snapshot()

# Document session info
sessionInfo()

Troubleshooting

Common Issues

ProblemSolution
Package conflictsUse conflicts() to check
Memory issuesIncrease memory limit in RStudio
Version conflictsUse renv for isolation
Bioconductor errorsUpdate BiocManager

Getting Help

  • R Help: ?function_name
  • Package Vignettes: browseVignettes("package_name")
  • Stack Overflow: [r] tag
  • Bioconductor Support: support.bioconductor.org

Next Steps

After setting up your R environment:

  1. Explore the workflow results using the provided RMarkdown notebooks
  2. Customize your analysis with additional R packages
  3. Create publication-ready figures using ggplot2 and extensions
  4. Share your code using version control and documentation

For workflow-specific analysis, see the Interactive Analysis guide.


These extensions will significantly enhance your R/RStudio experience and make bioinformatics analysis more efficient and enjoyable.